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Abstract—Numerical calculations were performed for two examples of the response of elastic-plastic
beams subjected to dynamic Joads. These were a simply supported, axially restrained beam under suddenly
applied uniform pressure, and an axislly restrained, clamped beam with s central mass that is impacted by a
projectile. Large elastic-piastic deflections were considered, and the method of fisite differences was used.
Two different constitutive equations were assumed: the elastic-perfectly plastic relation, and a special
elastic-viscoplastic, strain hardening model. Analysis of the results included examining the interaction
between the bending moment and the axial force, the varistion of the axial force, bending moment and
deflection with time, and the propagation velocities of the various phenomena during motion. Experiments
were carried out in which a rifle projectile hit a central mass which had been fastened to a clamped beam.
Comparison between the theoretical and experimental dynamic deflections shows good agreement for
relatively short response times.

INTRODUCTION
The beam is one of the simplest structures and, therefore, many studies have been carried out
to determine its response to transversely applied dynamic loads. In the case of large elastic-
plastic deformation, the problem cannot be solved exactly by analytical methods as it becomes
relatively complicated.

There are a number of analytical and experimental investigations which deal with simple
beam problems in which the analyses generally assume rigid-plastic or elastic-perfectly plastic
behavior of the material, e.g. Parkes{1], Nonaka[2]. For more information, Symonds[3] gives a
very detailed survey of analytical methods and experimental results. For complicated boundary
conditions or more realistic constitutive equations, numerical methods must be used to obtain
results for the dynamic behavior of beams.

In the present investigation, the method of finite differences was used based on the work of
Leech and Pian{4] and Witmer, Balmer, Leech and Pian[5]. It is suitable for any set of
boundary conditions, and any constitutive equation may be used. The main aim of the present
work was to study several aspects of the response characteristics of beams of elastic,
viscoplastic material such as the deflection curve as a function of time, the final defiection, the
interaction between the axial force and the bending moment, the propagation velocities of the
various phenomena, etc.

One of the important points in such problems is to characterize the dynamic, inelastic
material behavior by defining its constitutive equation. This subject has been extensively
studied during the last two decades because many practical problems require this information.
Review papers on this subject have been written by Lindholm [6], Campbeli{7] and by others.

It has seemed expedient to develop a material representation which is not based on a yield
condition and which is rate dependent in the complete range of stress states. Such a formulation
would have more physical basis than the classical idealizations and would be more suitable for
numerical computations. Bodner and Partom([8,9] have recently developed constitutive
equations for elastic viscoplastic, strain hardening materials which do not require a yield
criterion and are motivated by dislocation dynamics. It is specially suitable for numerical
procedures since neither unloading nor yielding conditions have to be introduced. An important
part of this work is the application of the Bodneér and Partom theory to the beam problem and
to compare the results to experimental work and to theoretical predictions obtained by
assuming elastic-perfectly plastic material behavior.

1The research reported in this document has been supported in part by the Air Force Office of Scientific Research under
Grant AFOSR-74-2607B, through the European Office of Aerospace Research (EOAR), United States Air Force.
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STRUCTURAL ANALYSIS

A general model for large dynamic deflections of shells was developed by Leech and
Pian(4], and by Witmer, Balmer, Leech and Pian[5], which is directed to numerical solutions
by the method of finite differences. The basic equations are Newton’s second law for a segment
of a beam which is considered as the basic structural element. The analysis takes into account
large deflections and strains, both tangential or lateral loadings, and can be used with any
constitutive equation of the material. On the other hand, the beam element was assumed to be
“long” so that shear deformation and rotational inertia could be neglected. Motion in one plane
was considered as well, and changes in cross sectional area were neglected.

The dynamic model consists of point masses which are connected by straight weightless
rods. The rods’ length may change according to the axial force, but the rods never bend. Any
change in curvature can take place only by changing angles between the rods. The beam
cross section is represented by horizontal layers which are connected by a vertical web. This web
has no axial strength but it is perfectly rigid against shearing stresses. The
properties of the modified cross section must be equivalent to those of the original one.
Therefore, the total cross sectional area of the layers must be equal to that of the original beam.
The second requirement is that the modified cross section has the same resistance against
bending, both in the elastic and inelastic ranges, as the original cross section. This can be
achieved only by taking a sufficiently large number of layers. A detailed description of the
dynamic model and the dynamic and geometric relations is given in {4, 5).

To achieve good computational results, it was found that some of the kinematic relations have
to be written in a form different from the obvious one. This is due to the limited accuracy of the di-
gital computer. It was observed that some variables computed by kinematic relations were given
the value zero instead of their relatively small value. This was a consequence of the normal ad-
vance and development of the following steps of calculation and could occur when calculating a
relatively small value as a difference between two large values. The best example is the increase of
strain of the neutral axis Ae,” after one time increment, where i denotes the segment number along
the beam and 7 is the number of the time increment. Usually, the strain increase is given by

_A(8S), _ &S/ - 88"

Ae’ 5X X (l)

where X is the coordinate along the original axial direction of the beam, 3X is the initial length
of one segment of the beam, 45/ is the length of the ith segment after r time increments, and A
denotes an increment of any variable due to one time increment AT. 8S: is given by the
coordinates of the point masses

88 = (Xi - Xi-)* + (Y - Vi)l ¥3)

It was realized that eqns (1) and (2) are not suitable for the numerical procedure, mainly in
the early steps, because the difference calculated in eqn (1) is very small in comparison with the
segment length. This causes the computer to neglect the strain from the beginning with the
result that no stress is “developed” during the entire calculation and the program fails. This
difficuity is avoided if the strain increase is calculated directly from the point mass velocities.
By time differentiation of (2) we get for the strain increase:

A€ =[cos (X, — Xi-.) +sin 8(Y: - Yi-)JAT/SX 3

where X, Y are the velocities, and 6 is the angle between the ith rod of the dynamic model
and the x-axis. The same procedure was carried out to compute the curvature increase directly
from the velocities.

The calculation of the geometric variables by their change with time, instead of by those
relations which had been used before, leads to fairly accurate values for the strain increase of
every layer. From the segment geometry

35 = 5S(1+ ¢K) @
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where £ is the distance of the layer from the neutral axis, K is its curvature, and the bar over
any given parameter denotes that the value corresponds to a single layer. The time dif-
ferentiation of eqn (4) gives the formula for the increase of strain of the kth layer, which is
important for large deflections and curvatures:

A& (k) = A[BS, (K))/8X = Ae[1 + £(K)K.] + gf(-‘ £(k)AK, )
The relation for the deformation rate d is:
di(k) = A[88.(k)}/85. (k)AT ©)

BOUNDARY CONDITIONS

Numerical computations were carried out for two examples: (A) A simply supported, axially
constrained beam subjected to suddenly applied uniform pressure which remains constant with
time. (B) A fully clamped, axially constrained beam with a central mass subjected to projectile
impact and imbedment in the mass.

Example A was chosen as it is a typical and classical problem so that general conclusions
can be derived from it about the dynamic behavior of the variables. Another reason is that this
example is relatively simple to solve analytically for low loads for which the beam is in the
elastic range. It was of interest to compare the general program results for the elastic range to
the corresponding analytical solution for elastic vibrations.

Example B was chosen as it is a relatively simple experimental arrangement. Experiments
were carried out and the results of the theoretical and experimental mid-beam deflections were
compared. Figure 1 gives the drawing of the specimen. As the central mass was assumed to be
concentrated at midpoint, it is obvious that

Mm = Mo+ m, +m, (7)
where m.. is the total midpoint mass, m, is the projectile mass, m; is the point mass of the
homogeneous beam, and m, is the mass of the blocks, bolts and nuts.

For the first approximation, the impuise was assumed to occur in a very short time so that
the mid-beam initial velocity is given by
vmo = "lo Volmm (8)

where V, is the projectile impact velocity. Secondly, it was assumed that the impulse acts
during a finite time T, so that the average force is

F,= MoVo/Tl. (9)
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Fig. 1. Drawing of the experimental specimen.
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As T, has arelatively small value (in microseconds), almost the same results were obtained for both
assumptions when longer deformation times were considered.

CONSTITUTIVE EQUATIONS

The two examples were solved assuming two different relations for the constitutive
equations:

(1) Elastic-perfectly plastic (e.p.p.).

(2) Elastic-viscoplastic, strain hardening (e.v.p.) which has been developed within the last
years by Bodner and Partom[8, 9].

The e.p.p. relation is the simplest and most economical one from the computational
viewpoint, but is considered only as a first approximation to actual material behavior. For better
predictions, some other relations might be used such as the elastic linear strain hardening
(bilinear) relation[5] or a Ramberg~-QOsgood type representation which takes into account the
strain hardening phenomenon. If the material shows significant strain rate sensitivity, some
approximation for this effect can be made, and there are suggestions for such strain rate laws,
¢.8. Bodner and Symonds([10]. The beam problems under consideration involve loading and
unloading and the strain rate changes with time and place along the beam. Even in the same
cross section, the strain rate varies for every layer so the preceding methods cause com-
putational difficulties and an expenditure of computation time.

A theory of elastic-viscoplastic, strain hardening material behavior which does not require a
yield criterion or loading and unloading comditions would be very useful for this class of
dynamic plasticity problems. These characteristics are inherent in the theory developed by
Bodner and Partom(8, 9] which is motivated in part from concepts of “dislocation dynamics”.
One of the important points in the present paper has been to examine some consequences of
using this theory for structural problems involving loading and unloading and chsaging strain
rates.

The basic assumption of the theory is that the total deformation rate can be separated at all
stages into elastic and inelastic components,

dy=dy+dj (10)

where
du =‘21'(Vu+ Vu) (11)

and V, are the particle velocity components. This leads to constitutive equations in which the
rate components are functions only of state variables, e.g. the elastic stress, and the defor-
mation state.

The basic form of the flow law of classical plasticity is:

dﬂ = 45 = Agy (12)

where the bar symbol indicates the deviatoric components.
Squaring (12) leads to

A*=D"], (13)

where D" and J, are the second invariants, respectively, of the plastic deformation rate
deviator and the elastic stress deviator. It is further assumed that

D’ = f(J,). (14
Suggested forms for this function are those that have been developed to relate the

dislocation velocity to the stress. Equation (14) can then be interpreted as a multi-dimensional
generalization of those unidirectional equations. A convenient form for eqn (14) that appears to
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have a physical basis was proposed by Bodner and Partom[8, 9],

D =-Do>exp {- [A*(- 1]} 15)
where
a=apz ()" (16)

The quantities Do, Z and n are material constants. Work hardening is considered by making
Z an increasing function of the quantity that represents the worked state of the material which,
for simplicity, is taken to be the total plastic work W,, where

Wp = gydp. a”n

This would correspond to the plastic deformation rate being a decreasing function of W, which
is one of the macroscopic consequences of strain hardening. A suitable functional form for
Z=2Z(W,)is

Z=2,+(Zo~Z:\) exp(—mW,/Z,) (18)

where Z,, Z:, and m are new material constants. This hardening law corresponds to isotropic
hardening and therefore does not indicate any Bauschinger effect.

The beam problems in the present paper were considered to have only uniaxial stress, for
which

2
=L
J=-3 19

where o is the axial stress in a layer of the beam, and
oTu= 2(?]3. (20)

The expression for the axial plastic deformation rate is obtained from (12), (15), (19) and (20),

» =D o 21 "
d® = Aoy V3ol exp [ 3 (3A%o?) ] @n

The rate of plastic work is derived from (17),
W, = od” 22)
and the elastic deformation rate is given by Hooke’s Law for the case of small elastic strains,
d* = d/E. 23)

The stress o can then be computed from these equations by an iteration method in which the
total axial deformation rate d is calculated by the coordinates and velocities of the point masses
and both d° and d” are given functions of ¢ and o.

EXPERIMENTAL WORK

The case of a fully clamped beam with a central mass subjected to an impulsive-force at the
mid-point was investigated experimentally. The impulse was applied by a bullet striking and
imbedding itself in the central mass, and high speed photographs were taken of the beam
response.

The projectile was a standard 0.22 in caliber bullet having a mass of 2.63 gr and an average
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velocity of 400 m/sec. It was made of lead and covered with brass. Figure 1 is a detailed
drawing of the specimen where the central mass consists of two aluminum blocks bolted to the
beam mid-point. The weight of these two blocks plus the two bolts and nuts was about 30 gr.
The beam total length was 255 mm, but as it was clamped at its ends, the effective length was
230 mm. Its width was 20 mm and thickness 1 mm.

Experiments were carried out for two materials: Al 6061-T6 and commercially pure
titanium. A large number of tests were performed on 16 specimens in order to get reliable
results.

Figure 2 is a schematic of the experimental arrangement. The system included three flash
unit§ which were inter-connected by time delay units so that three flashes—one after the
other—could be carried out with maximum available time intervals of 150 usec. Every picture,
therefore, can include three dynamic positions of the deflected beam so that the exact time for
each position can be readily caiculated. Pictures of the final static deflection were also taken.
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Fig. 2. Schematic of the experimental arrangement.

RESULTS AND CONCLUSIONS
Mechanical properties

The mechanical properties of the materials were obtained by tensile experiments in an
Instron testing machine. It was realized that the strain rate sensitivity of Al 6061-T6 is very
small and can be ignored and its strain hardening is also negligible. Therefore, it was considered
in the co:nputations as an elastic perfectly plastic material with an average vield stress of
30 kg/mm"*.

Figure 3 shows stress-strain curves for commercially pure titanium. It can be seen that it has
high rate sensitivity and its strain hardening is not large but cannot be neglected. Therefore, it
has to be treated in computations as an elastic-viscoplastic, strain hardening material. This
matefial, as mentioned before, is defined by five material constants (in addition to its elastic
modulae): Do, Zo, Z:, n and m, which can be obtained by fitting results of uniaxial tensile
experiments to those computed numerically. Figure 3 shows the graphs obtained by fitting
results at two relatively low strain rates. The upper curve is an extrapolation for a higher rate of
10 sec™ . The following values were obtained for titanium:

Do* = 10* sec™?
n=1
m =100
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Fig. 3. Stress-strain relation of a titanium specimen during tensile test.

Zo=12.6 Kbars
Z, = 19.5 Kbars

These properties are similar to those obtained in the past works except for Z, and Z, which
here have higher values. Since the important strain rates for the beam response in the impulsive
loading tests were in the high range, about 10 sec™’, it would have been preferable to choose the
material constants to best fit results in this range. However, these were not available for the
specimen material. Other test data on titanium, e.g.[11], indicate that the calculated stress-strain
curve for é = 10sec™, Fig. 3, is reasonable at low strain levels but somewhat over-magnifies
the strain hardening effect at high strains.

In order to compare the elastic-viscoplastic, strain hardening material behavior to that of the
elastic-perfectly plastic material, it was necessary to assume an approximate average value for
the yield stress o, of titanium. The results of the numerical examples for the response of the
beams shows that the principal strain rates were about 10sec™ . The calculated stress-strain
relation for this rate, Fig. 3, indicates that the “yield stress” for large strains would be
approximately 7.3 Kbar.

Theoretical results for exampie A

For the numerical example of a simply supported beam under suddenly applied uniform
pressure which remains constant with time, a titanium beam with a length of 100cm and a
square cross section of 2 X 2 cm was considered. The beam was divided into 40 segments and 4
layers for the numerical procedure. A uniformly distributed force of 4x 10°dyn/cm was
assumed to be applied suddenly to the lateral surface of the beam. Only numerical studies were
performed for this example as a suitable experimental system for uniform dynamic load
application was not available.

Figure 4 shows the calculated axial force at mid-beam as a function of time. Since its
appearance starts at the supports and then moves towards mid-beam, the force at the middle
becomes non-zero only after a time of about 100 usec. The average velocity of this signal is,
therefore,

V, = 0.5m/100 x 107% sec = 5000 m/sec. 24
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Fig. 4. Axial force at center of a simply supported axially constrained titanium beam, subjected to a uniform

step load.

The velocity of the elastic wave is

V. =V(Elp)= \/ (%%Isc&) = 4960 m/sec. (25)

It is obvious that V, =V, as had been expected.

Figure 5 shows the axial force at the end of the beam as a function of time. A principal
difference between Figs. 4 and S, aside from the time response factor, is the final value of the
axial force for the e.v.p. material. At mid-beam it is less than that of the e.p.p. material, but at
the beam end it is much higher. This is a consequence of an average value being assumed for
the yield stress of the ¢.p.p. material, and the strain rates at the ends being higher than those at
the middle. Because of this variation, the ¢.v.p. relation would give more realistic results for a
rate sensitive material.

Figure 6 gives the bending moment 5 cm from the beam end as a fuaction of time. The curve
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Fig. 5. Fig. 6.
Fig. 5. Axial force at the end of a simply supported axislly constrained titanium beam, subjected to a
uniform step load.

Fig. 6. Bending moment 5cm from the end of a simply supported axially constrained titanium beam,
subjected to a uniform step load.
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for the e.v.p. material is more “smooth” and seems to represent the real physical behavior more
correctly.

The relation between the bending moment M and the axial force N for a rectangular cross
section and an elastic perfectly plastic material is given for complete yielding of the whole cross
section by '

M
M,

" [-;}i] =1 (26)

when M, is the fully plastic moment and N, is the fully plastic axial force. As M, and N, are
constants of the cross section, eqn (26) is a direct connection between M and N for the fully
plastic range. If N reaches N,, then M becomes zero and the beam behaves like a string. In the
present problem, most of the cross sections along the beam are not in a situation of complete
yielding, but it is still of interest to check this relation. It was done for the e.p.p. material, as
shown in Figs. 7-9, which represent pictures of M, N and the deflection Y in different times. At
the start of beam motion, the axial force is very small but then starts growing with time. When
the deflection is about 7.5 cm, the beam behaves almost like a string as can be seen in Fig. 9.

An interesting phenomenon is the deflection curve in Figs. 8 and 9 which has its highest
value near the beam ends and not at the middle. The same effect can be observed in
photographs of the experiments of Florence and Firth[12].

T250 psec
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Fig. 7. Bending moment, axial force and deflection of a simply supported axially constrained elastic-
perfectly plastic titanium beam, 50 usec after application of a uniform step load.
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Fig. 8. Bending moment, axial force and deflection of a simply supported axially constrained elastic-
perfectly plastic titanium beam, 140 usec after application of a uniform step loal.
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Fig. 9. Bending moment, axial force and deflection of a simply supported axially constrained elastic-
perfectly plastic titasium beam, 260 usec after application of a uniform step load.

Theoretical and experimental results for example B

Experiments and calculations for this case were carried out for both Al 6061-T6 and
commercially pure titanium. Figure 10 shows the calculated response shapes of one half the
titanium beam at different times. It was treated as an e.v.p. material. Smaller overall defiections
were obtained for the titanium beam than for the AL 6061-T6 beam because of the rate
sensitivity factor. In addition, the deflected shapes of the titanium beams were more curved
than those for the aluminum beams for which almost straight lines were obtained. The negative
deflection near the two ends of the deflected zone was also observed in the experimental
photographs.

Figure 11 compares the experimental mid-beam deflection to the calculated deflection as a
function of time for titanium. The experimental points are above the theoretical curve. This is
probably a consequence of the material parameters being obtained by fitting resuits for low
strain rates. Here the behavior is extrapolated to much higher strain rates which may cause
accuracy problems. Final deflection magnitudes were not computed due to the long computer
times involved.

Figure 12 shows how the length of the deflected zone increases with time in aluminum.
There is good agreement between the calculations and the experiment except for the final state.
This disagreement is caused by the fact that the dynamic model consisted of straight segments
with finite length so the boundary conditions for clamped ends of the beam makes the effective
length of the deflecting beam shorter with the result that the theoretical Z cannot reach the
value of the total length.
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Fig. 10. Deflection of a fully clamped elastic-viscoplastic, strain hardening titanium beam with a centrai
mass, at different times, subjected to a projectile impact and imbedment in the mass.
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Fig. 11. Midpoint deflection of a fully clamped elastic-viscoplastic, strain hardening titanium beam with a
central mass, subjected to a projectile impact and imbedment in the mass.
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Fig. 12. Length of deflected 2one of a fully clamped elastic-perfectly plastic AL 6061-T6 beam with a central
mass, subjected to a projectile impact and imbedment in the mass.

Numerical stability

Numerical computational stability requires satisfaction of a relation between the time
increment AT and the segment length 5X. In solving simple elastic vibration problems directly
using the differential equation of the elastic beam, the stability condition is found
analytically{13],

AATIBXY <12 270
where
a =+/(EIlpA). (28)

As “a” includes the elastic wave velocity, it is obvious that AT must decrease if the
phenomenon goes faster. Usually, the number of segments is chosen according to the desired
accuracy and only later is AT evaluated.

This criterion is, however, not suitable for the general program of large deflections. It also is
not applicable in the present case even for elastic behavior, which takes place when the loads
acting on the beam are sufficiently low, because the numerical scheme used in this investigation
is different.

Tt was suggested[5] to use the experimental relation

QQTIX)V/(Elpy<r

where r is a constant with a value between 0.5 and 0.8, but this relation does not take into
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account the shape and dimensions of the cross section, the boundary conditions of the specific
problem, and the constitutive equations of the material.

In the present paper, AT was found by trial and error by decreasing it until stability was
achieved. The beam was divided into 40 equal segments. For examples A and B, the values
obtained were respectively

ATA =0.2 usec
ATy ~0.002 usec.

Both AT, and ATs are much less than the values corresponding to (27), and the computation is,
therefore, relatively long and expensive. The computations were petformed on an IBM 370/165.
It was observed that the elastic-viscoplastic, strain hardening model had better stabilizing
qualities than the elastic perfectly plastic one which may be considered an important advantage
of this model.

Acknowledgements—The authors to thank Prof. S. R. Bodner for his valuable advice and suggestions during the
research. The contributions of Dr. J. Awerbuch to the experimental work are gratefully acknowledged.

REFERENCES

1. E. W. Parkes, The permanent deformation of an Encastré beam struck transversely at any point in its span. Proc. Inst.
Civil Engineers 10, 277-304 (1958).

3.P.S
B UnivmuytoDept.oftheNuvy.OlceofNavdRmrch(l%ﬂ.

4. J. Leech and T. H. H. Pian, Dynamic respomse of sheils to externally-applied dynamic loads. Report No.

ASD-TDR-GMIO Air Force Flight Dynamics Lab., Wright-Patterson AFB, Ohio (1962).

5. E. A. Witmer, H. A. Balmer, J. W. Leech and T. H. H. Pian, Large dynamic deformations of beams, rings, plstes and
shells. AIAA J. 1, 1848-1857 (1963).

6. U. S. Lindholm, Mechanical Properties at High Rates of Strain, Chap. 1. Conference Series No 21, The Inst. of
Physics, London and Bristol (1974).

. D. Cambell, Dynamic plasticity: macroscopic and microscopic aspects. Mater. Sci. Engng 12, 3-21 (1973).

R. Bodner and Y. Partom, Constitutive equations for elastic viscoplastic strain hardening materials. J. Appl. Mech.

79 (1979).

wnn.’dY l;mm.Ahpddotm' elastic viscoplastic analysis of a thick walled spherical shell. J. Appl.

», 751-757 (1

10. S. R. Bodner and P. S. Symonds, Experimental and theoretical investigation of the plastic deformation of cantilever
beams subjected to impulsive loading. J. Appl. Mech. 29, 719-728 (1962).

11. T. Nicholas, Strain rate and strain-rate-history effects in several metals in torsion. Experimental Mechanics 11,
3%0-374 (1971).

12. A. L. Florence and R. D. Firth, Rmdphsucbumunderumfomlydmribuxedmmm J. Appl. Mech. 32, 481-488
(196%).

13. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, 2nd Edn. Interscience, New York
(1967).

7.
8.

npn-
s

9.

-



